Possible Solutions

Use a model to connect the circumference of a circle to its formula.

Solution 1

A student can use string to measure the length around a circle and to measure the length of the radius of the circle. The length of string needed to represent the circumference of the circle is a little more than six times the length of string needed to represent the radius of the circle.

$$
C=6 r=2(3) r=2 \pi r
$$

Solution 2

When a circle is "un-rolled", a parallelogram is almost created. The length of the parallelogram is a little longer than 3 times the length of the radius.

Area of a parallelogram $=$ Area of a circle

$$
\begin{array}{rll}
(3 r) r & =\pi r^{2} \\
3 r^{2} & = & \pi r^{2} \\
\pi r^{2} & =\pi r^{2}
\end{array}
$$

